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Abstract

Age at death distributions have generally been neglected for modeling and forecasting
mortality, despite being very well suited to study longevity, lifespan variation and mortality
developments. In this article, we propose to use age at death distributions to model the entire
pattern of mortality and to inform mortality forecasts. In particular, we introduce a novel
methodology that allows us to disentangle, model and forecast the three independent age-
specific components of mortality corresponding to young, middle and old ages, respectively.
The methodology is based on: (i) a nonparametric decomposition of death counts for the
estimation of the three mortality components, and (ii) a segmented linear transformation
of the age axis for modeling and forecasting the evolution of each component, which allows
capturing compression and shifting dynamics of mortality. We will illustrate our methodology
by estimating and forecasting the mortality pattern and life expectancy at birth of females
and males in high-longevity countries of the Human Mortality Database.

1 Introduction

Population projections and mortality forecasts have been studied since the beginning of the twen-
tieth century. The seminal works of Whelpton (1928, 1936) and Lotka (1939) on the cohort
component method and the stable population contributed significantly to the development and
application of the former. The latter have been produced by actuaries at least since 1924 due
to the adverse financial effects of mortality improvements on life annuities and pensions (Pollard,
1987). However, it is only in the last thirty years that more sophisticated statistical methodologies
to forecast mortality have been proposed and used (Booth and Tickle, 2008).

In general, three main functions can be used in the study of human mortality: the hazard, the
survival and the probability density function (Klein and Moeschberger, 2005). Although these
three functions describe the same stochastic phenomenon and are uniquely related between each
other, the vast majority of forecasting techniques are based on models of the hazard function or of
age-specific mortality rates (for example, Cairns et al., 2006; Currie et al., 2004; Lee and Carter,
1992; Li and Lee, 2005).

Mortality rates have been predominantly used to portray mortality developments because they
readily represent the change in the risk of death over age and time (Camarda, 2008). However, the
direct investigation of mortality rates does not provide an immediate answer to two key questions
in mortality studies, that is, how long does a population live on average, and how variables are
ages at death.

In addition to providing an informative description of the mortality experience of a population, the
probability density function (also called age at death distribution, or distribution of ages at death)
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yields readily available information on the “central longevity indicators” (mean, median and
modal age at death, Canudas-Romo, 2010; Cheung et al., 2005) as well as on lifespan variability.
Nevertheless, this function has generally been neglected in modeling and forecasting, as only few
attempts have been made to explicitly use it to forecast mortality (for example, Basellini and
Camarda, 2016; Bergeron-Boucher et al., 2016; Oeppen, 2008).

In this paper, we propose a novel methodology for modeling and forecasting mortality that is
based on age at death distribution. This article is organized as follows. In Section 2, we overview
the data and mathematical methods that we will use in this article. In Section 3, we summarize
our proposed methodology and briefly compare it with other approaches.

2 Data & Methods

2.1 Data

The dataset that will be employed in this paper is the Human Mortality Database (HMD, 2016),
which provides free access to historical mortality data for 43 different territories and countries
(mostly European, but also covering North America, Russia, Japan and Oceania). The HMD is
an important collection of detailed, consistent and high quality human mortality data that were
subject to a uniform set of procedures, which allow cross-national comparability of the information
(Barbieri et al., 2015).

2.2 Mortality Functions & Decomposition

Mortality can be effectively summarized by any one of three complementary functions: l(x), the
probability of surviving from birth to age x (the survival function); µ(x), the force of mortality at
age x (the hazard function); and d(x), the distribution of ages at death in the life table population
at age x (the probability density function). The three functions are uniquely related between each
other, and knowing one of them allows to determine the other two. For example, d(x) can be
expressed in terms of µ(x) as:

d(x) = l(x)µ(x) =
[
l(0)e−

∫ x
0 µ(a)da

]
µ(x) , (1)

where l(0) is the radix of the life table (which may equal one by definition, although it is usually
some large, arbitrary number like 100,000) (Preston et al., 2001).

The supposition that human mortality can be decomposed into three different groups that operates
principally, or almost exclusively, upon childhood, middle and old ages, respectively, goes back
at least one and a half century (Thiele, 1871), and it has been extensively used since then for
modeling purposes (Heligman and Pollard, 1980; Siler, 1979). In formal terms, the hypothesis can
be expressed as follows:

µ(x) = µI(x) + µA(x) + µS(x) , (2)

where the force of mortality µ(x) at age x is additively decomposed into three independent com-
ponents, µI(x), µA(x), and µS(x), which represent infant mortality, adult mortality and senescent
mortality, respectively. The assumption of three independent µi(x), where i = I, A, S, can be
usefully applied to Equation (1) to decompose the distribution of ages at death:

d(x) = l(x)µ(x) = l(x) [µI(x) + µA(x) + µS(x)]

= l(x)µI(x) + l(x)µA(x) + l(x)µS(x) = dI(x) + dA(x) + dS(x) . (3)

Equation (3) shows that d(x) can be decomposed into three independent components di(x), each
associated with its corresponding µi(x) by the formula di(x) = l(x)µi(x), where i = I, A, S.
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2.3 Estimation

An approach to estimate the three independent age-specific mortality components µi(x) (and
consequently di(x)) is thus required. In demographic and actuarial applications, an assumption
often encountered is that the total number of deaths Dx at age x follows a Poisson distribution,
that is, Dx ∼ Poisson(Ex · µx), where Ex is the number of person-years exposed to the risk of
dying (Brillinger, 1986).

Camarda et al. (2016) have recently proposed a nonparametric approach to decompose complex
series of counts that can be successfully applied to human mortality. Given a series of death
counts, the Sum of Smooth Exponentials (SSE) model allows to isolate and estimate each mortal-
ity components µi(x) without imposing any rigid parametric mortality structures. Among others,
one advantage of the SSE methodology is that it adequately blends the transitions between com-
ponents, without imposing sharp delimitations where one stops and another one continues.

2.4 Modeling & Forecasting

Having estimated the three components di(x), the next step is modeling and forecasting the
evolution of each one of them. Here, we describe the approach for doing so by focusing on the
senescent component dS(x) (from age 30 onwards, as in Basellini and Camarda, 2016).

The Segmented Transformation Age at Death Distributions (STAD) model relates a fixed “stan-
dard” to an observed distribution by a transformation of the age axis uniquely dependent on
the modal ages at death (M) and the variability of the two distributions. Let f(x) denote the
standard, g(x) the observed distribution, and t(x) the transformation that conforms the density
of g(x) with the one of f(x) on the transformed axis, that is, g(x) = f(t(x)). Then, the STAD
model can be expressed as:

t(x; s, bL, bU ) =

{
Mf + bL (x− s−Mf ) if x ≤Mg

Mf + bU (x− s−Mf ) if x > Mg (4)

where s = Mg − Mf denotes the difference between the mode of g(x) and f(x), and bL and
bU denote the change in the variability of g(x) with respect to f(x) before and after the mode,
respectively. A graphical example is helpful to better explain the segmented linear transformation
of the STAD model. In the right panel of Figure 1, the black line corresponds to f(x).

First, consider the case of a simple shift in the distributions (red line of the graphs). The f(x) is
shifted to the left, maintaining the same variability before and after the modal age at death. This
is a special case of Equation (4), in which bL = bL = 1 and the transformation function becomes
t0(x) = x− s.

Different values of bL and bU which act jointly with the shifting parameter s correspond to broader
mortality changes. When bL and bU are bigger than 1, the ages before and after the mode of g(x)
are shrunk, and variability in ages at death is decreasing with respect to f(x). On the other hand,
when bL and bU are smaller than 1, the ages before and after Mg are expanded, so that age at
death variability increases compared to the standard. In Figure 1, the ages before the mode are
expanded and the ages above are shrunk (purple line of the graphs). The three parameters of the
STAD model thus capture the shifting (s) and compression (bL and bU ) dynamics of mortality
(Bongaarts, 2005; Wilmoth and Horiuchi, 1999).

Moving from the theoretical description of the model to its actual application for modeling and
forecasting a series of age at death distributions over time, the first step is the choice of the stan-
dard distribution f(x). While several options are available, Basellini and Camarda (2016) suggest
to first align the observed distributions, and then to choose the mean as standard. The landmark
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Figure 1: A schematic overview of the effects of transforming the age axis using the STAD model.

registration technique (Ramsay and Silverman, 2005) indeed allows not to mix up features of the
observed distributions that occur at different distances with respect to the mode.

Having fixed the standard distribution, the three parameters can be estimated and forecast, and
forecast age at death distributions can be thus derived. The estimation procedure is performed
by maximum likelihood, following the Poisson assumption described in Section 2.3. Parameters
are then modelled and forecast using the standard class of univariate time-series autoregressive
integrated moving average (ARIMA) models (Box and Jenkins, 1970).

As concluding remark, it should be noted that a modification of the STAD model will be necessary
for the analysis of the first two components dI(x) and dA(x), in which the shifting mortality
dynamic may be absent or only very minor (and fixed within a small age range).

3 Discussion

Age at death distributions have generally been neglected for modeling and forecasting mortality,
despite being well suited to study longevity, lifespan variation and mortality developments. In
this article, we propose to model and forecast mortality by studying changes that have occurred
in age at death distributions. In particular, we aim to provide a comprehensive methodology
that captures the entirety of the mortality pattern. In order to do so, two steps are required and
currently envisioned: (i) the disentanglement and estimation of the three independent age-specific
mortality components, and (ii) the modeling and forecast of each component. Recently proposed
methodologies for both issues will be used, modified as needed and adopted in combination.
Analyses will be performed on freely available data from the Human Mortality Database.

The decomposition of the distribution of deaths has already precedents in the literature. For
example, Pearson (1948) developed a method for expressing the “curve of death” by a combination
of three independent Normal distributions covering different periods of life. More recently, Zanotto
et al. (2016) proposed a mixture three-component parametric model with response variable the
life table distribution at deaths to study changes of premature mortality over time. However, the
methodology proposed here is the first attempt, according to our knowledge, to decompose the
distribution of deaths to model and forecast mortality developments. In addition, our approach
differentiates from the other two as it is completely nonparametric, thus lacking any assumption
on strict parametric mortality structures.
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